

Oriem Pty Ltd

Chemwatch Hazard Alert Code: 3

Chemwatch: **5535-68** Version No: **2.1** Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Issue Date: **04/04/2022** Print Date: **04/04/2022** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Oriem Hy Finish Part A	
Chemical Name	Not Applicable	
Synonyms	Product code: 78192024	
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Two pack Non – Yellowing Polyurathane – Activator – PU Floor Finish
	Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name	Oriem Pty Ltd
Address	3/189 Newton Road Wetherill Park NSW 2164 Australia
Telephone	9055 0030
Fax	Not Available
Website	www.oriem.com.au
Email	Purchasing@oriem.com.au

Emergency telephone number

Association / Organisation	Chemwatch Emergency Response	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	1800 951 288	+61 1800 951 288
Other emergency telephone numbers	+61 2 9186 1132	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S5		
Classification ^[1]	Flammable Liquids Category 3, Aspiration Hazard Category 1, Serious Eye Damage/Eye Irritation Category 2B, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Germ Cell Mutagenicity Category 1A, Carcinogenicity Category 1B, Hazardous to the Aquatic Environment Long-Term Hazard Category 2		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI		

Signal word Danger

Hazard statement(s)

AUH066	Repeated exposure may cause skin dryness and cracking.
H226	Flammable liquid and vapour.
H304	May be fatal if swallowed and enters airways.
H320	Causes eye irritation.
H335	May cause respiratory irritation.
H336	May cause drowsiness or dizziness.
H340	May cause genetic defects.
H350	May cause cancer.
H411	Toxic to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P271	Use only a well-ventilated area.
P280	Wear protective gloves and protective clothing.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.	
P331	Do NOT induce vomiting.	
P308+P313	IF exposed or concerned: Get medical advice/ attention.	
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P391	Collect spillage.	
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	30-60	Acrylic Resin, Proprietary
64742-95-6	10-29	naphtha petroleum, light aromatic solvent
64742-94-5	10-29	solvent naphtha petroleum, heavy aromatic
Legend:	1. Classified by Chemwatch; Annex VI; 4. Classification dra	2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - awn from C&L * EU IOELVs available

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
 Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result	

Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material.
HAZCHEM	-3Y

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. 							
	Chemical Clas For release on SORBENT TYPE LAND SPILL -	s: aliphatic to land: re RANK SMALL	hydrocarbo commendec APPLICA	ons I sorb TION	ents listed	in order o CTION	f priority. LIMITATIONS	
Major Spills	cross-linked polymer - particulate			1	shovel	shovel	R, W, SS	
	cross-linked polymer - pillow		1	throw	pitchfor	R, DGC, RT		
	wood fiber - pillow		2	throw	pitchfor	R, P, DGC, RT		
	treated wood fibre- pillow		2	throw	pitchfor	G DGC, RT		
	sorbent clay	- particula	te	3	shovel	shovel	R, I, P	

foamed glass - pillow LAND SPILL - MEDIUM cross-linked polymer - particulate cross-linked polymer - pillow sorbent clay - particulate polypropylene - particulate expanded mineral - particulate polypropylene - mat	3 1 2 3 3 3 4	throw blower throw blower blower	pitchfork skiploader skiploader skiploader	R, P, DGC, RT R,W, SS R, DGC, RT R, I, P
LAND SPILL - MEDIUM cross-linked polymer - particulate cross-linked polymer - pillow sorbent clay - particulate polypropylene - particulate expanded mineral - particulate polypropylene - mat	1 2 3 3 4	blower throw blower blower	skiploader skiploader skiploader	R,W, SS R, DGC, RT R, I, P
cross-linked polymer - particulate cross-linked polymer - pillow sorbent clay - particulate polypropylene - particulate expanded mineral - particulate polypropylene - mat	1 2 3 3 4	blower throw blower blower	skiploader skiploader skiploader	R,W, SS R, DGC, RT R, I, P
cross-linked polymer - pillow sorbent clay - particulate polypropylene - particulate expanded mineral - particulate polypropylene - mat	2 3 3 4	throw blower blower	skiploader skiploader	R, DGC, RT R, I, P
sorbent clay - particulate polypropylene - particulate expanded mineral - particulate polypropylene - mat	3 3 4	blower blower	skiploader	R, I, P
polypropylene - particulate expanded mineral - particulate polypropylene - mat	3	blower	akiplaadar	
expanded mineral - particulate polypropylene - mat	4	blowor	skipioauei	W, SS, DGC
polypropylene - mat	4	Diowei	skiploader	R, I, W, P, DGC
	4	throw	skiploader	DGC, RT
DGC: Not effective where ground co R; Not reusable I: Not incinerable P: Effectiveness reduced when rain RT:Not effective where terrain is rug SS: Not for use within environmenta W: Effectiveness reduced when win Reference: Sorbents for Liquid Haz. R.W Melvold et al: Pollution Techno Clear area of personnel and mo Alert Fire Brigade and tell them May be violently or explosively r Wear breathing apparatus plus Prevent, by any means available Consider evacuation (or protect No smoking, naked lights or igni Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used Contain spill with sand, earth or Use only spark-free shovels and Collect recoverable product into Absorb remaining product with s	ver is / ged lly ser dy ardous ogy R ve upv ocation oportect ardous eactive vorotect to dis vermind explo labelle and, e a labelle	dense dense sitive sites substance eview No. vind. n and natu e. tive gloves. age from e ce). purces. perse /abs culite. sion proof ed containe earth or ver led drums	e Cleanup an 150: Noyes D re of hazard.	d Control; Data Corporation 1988 e or water course.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling	 Conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Containers, even those that have been emptied, may contain explosive vapours. Do NOT cut, drill, grind, weld or perform similar operations on or near containers. DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of overexposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid generation of static electricity. DO NOT use plastic buckets. Earth all lines and equipment. Use spark-free tools when handling. Avoid physical damage to containers. More handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
---------------	--

	Store in original containers in approved flammable liquid storage area.
	Store away from incompatible materials in a cool, dry, well-ventilated area.
	DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
	No smoking, naked lights, heat or ignition sources.
	Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access.
	 Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
	Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
Other information	 Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and flammable gas detectors.
	Keep adsorbents for leaks and spills readily available.
	Protect containers against physical damage and check regularly for leaks.
	Observe manufacturer's storage and handling recommendations contained within this SDS.
	In addition, for tank storages (where appropriate):
	Store in grounded, properly designed and approved vessels and away from incompatible materials.
	For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip
	storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
	Storage tanks should be above ground and diked to hold entire contents.

Conditions for safe storage, including any incompatibilities

Suitable container	 Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid. Check that containers are clearly labelled and free from leaks. For low viscosity materials (i) : Drums and jerry cans must be of the non-removable head type. (ii) : Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
Storage incompatibility	 For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides. Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. Microwave conditions give improved yields of the oxidation products. Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx - these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. Aromatics can react exothermically with bases and with diazo compounds.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
naphtha petroleum, light aromatic solvent	1,200 mg/m3	6,700 mg/m3	40,000 mg/m3

naphtha petroleum, light aromatic solvent Not Available Not Available	
solvent naphtha petroleum, heavy aromatic Not Available Not Available	

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit			
naphtha petroleum, light aromatic solvent	E	≤ 0.1 ppm			
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.				

MATERIAL DATA

WARNING: This substance is classified by the NOHSC as Category 2 Probable Human Carcinogen

These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health:

LOD: Limit of detection

Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen

Jankovic J., Drake F.: A Screening Method for Occupational Reproductive

American Industrial Hygiene Association Journal 57: 641-649 (1996)

For trimethyl benzene as mixed isomers (of unstated proportions)

Odour Threshold Value: 2.4 ppm (detection)

Use care in interpreting effects as a single isomer or other isomer mix. Trimethylbenzene is an eye, nose and respiratory irritant. High concentrations cause central nervous system depression. Exposed workers show CNS changes, asthmatic bronchitis and blood dyscrasias at 60 ppm. The TLV-TWA is thought to be protective against the significant risk of CNS excitation, asthmatic bronchitis and blood dyscrasias associated with exposures above the limit.

Odour Safety Factor (OSF) OSF=10 (1,2,4-TRIMETHYLBENZENE)

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- B 26-550As "A" for 50-90% of persons being distracted
- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Appropriate engineering controls	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Oriem Hy Finish Part A • Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. Open-vessel systems are prohibited. • Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. + Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas) Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air. Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed. Personal protection Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should Eye and face protection include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection See Hand protection below Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: · frequency and duration of contact, · chemical resistance of glove material, · glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Hands/feet protection When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use

- · Contaminated gloves should be replaced.
- As defined in ASTM F-739-96 in any application, gloves are rated as:
- · Excellent when breakthrough time > 480 min
- \cdot Good when breakthrough time > 20 min
- \cdot Fair when breakthrough time < 20 min
- · Poor when glove material degrades
- For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

	 Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit for purposes of decontamination or disposal. The contents of such ing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such ingervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. Some plastic personal protective quipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electr

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	A-AUS / Class1 P2	-
up to 50	1000	-	A-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	A-2 P2
up to 100	10000	-	A-3 P2
100+			Airline**

* - Continuous Flow ** - Continuous-flow or positive pressure demand

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

+ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.

- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Colourless Flammable liquid with Characteristic Aromatic odour; not miscible with water. Fp 41 Colourless		
Physical state	Liquid	Relative density (Water = 1)	0.97
Odour	Characteristic	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	154	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	41	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	<1
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. 512r67\ Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
Ingestion	Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Accidental ingestion of the material may be damaging to the health of the individual.
Skin Contact	Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy

Eye	 intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Open cuts, abraded or irritated skin should not be exposed to this material The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives . The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. On the basis, primarily, of animal experiments, the material may be regarded as carcinogenic to humans. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in cancer on the basis of: - appropriate long-term animal studies - other relevant information There is sufficient evidence to provide a strong presumption that human exposure to the material may result in the development of heratbale genetic damage, enerally on the basis of - appropriate animal studies, - other relevant information Prolonged or prepated skin contact may cause drying with cracking, irritation and possible dermatitis following. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory toss. thereor in the fingers and hongue, vertigo, offactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbers and paraesthesias), psychological and neurophysiological difficits, bone marrow toxicities (including hydrocarbon may colacialed demmakes. Surface cacking and arosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particular

Oview Hy Finish Dart A	ΤΟΧΙΟΙΤΥ	IRRITATION
Oriem Hy Finish Part A	Not Available	Not Available

naphtha petroleum. light	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
aromatic solvent	Inhalation(Rat) LC50; >4.42 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]
	Oral (Rat) LD50; >4500 mg/kg ^[1]	
solvent naphtha petroleum, heavy aromatic	тохісіту	IRRITATION
	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye (rabbit): Irritating
	Inhalation(Rat) LC50; >0.003 mg/L4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50; 512 mg/kg ^[1] Skin: adverse effect observed (irritating) ^[1]	
Legend:	1. Value obtained from Europe ECHA Registered Subst	ances - Acute toxicity 2.* Value obtained from manufacturer's SDS.

Oriem Hy Finish Part A	Data demonstrate that during inhalation exposure, aromatic hydrocarbons undergo substantial partitioning into adipose tissues. Following cessation of exposure, the level of aromatic hydrocarbons in body fats rapidly declines. Thus, the aromatic hydrocarbons are unlikely to bioaccumulate in the body. Selective partitioning of the aromatic hydrocarbons into the non-adipose tissues is unlikely. No data is available regarding distribution following dermal absorption. However, distribution following this route of exposure is likely to resemble the pattern occurring with inhalation exposure. Aromatics hydrocarbons may undergo several different Phase I dealkylation, hydroxylation and oxidation reactions which may or may not be followed by Phase II conjugation to glycine, sulfation or glucuronidation. However, the major predominant biotransformation pathway is typical of that of the alkylbenzenes and consists of: (1) oxidation of one of the alkyl groups to an alcohol moiety; (2) oxidation of the hydroxyl group to a carboxylic acid; (3) the carboxylic acid is then conjugated with glycine to form a hippuric acid. The minor metabolites can be expected to consist of a complex mixture of isomeric triphenols, the sulfate and glucuronide conjugates of dimethylbenzyl alcohols, dimethylbenzoic acids and dimethylhippuric acids. Consistent with the low propensity for bioaccumulation of aromatic hydrocarbons following inhalation exposure involves either exhalation of the unmetabolism. The predominant route of excretion of aromatic hydrocarbons following inhalation exposure involves either exhalation of the unmetabolized parent compound, or urinary excretion of its metabolites. When oral administration occurs, there is little exhalation of unmetabolized these hydrocarbons, presumably due to the first pass effect in the liver. Under these circumstances, urinary excretion of metabolites is the dominant route of excretion.
NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT	* [Devoe] .
SOLVENT NAPHTHA PETROLEUM, HEAVY AROMATIC	for petroleum: Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline This product may contain benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity : Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Mutagenicity : There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results in mutagenicity assays. Reproductive Toxicity : Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. Human Effects : Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as
Oriem Hy Finish Part A & NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial

hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid . The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg) . Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels . No effects were reported for rats exposed to a mixture of trimethyl- benzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5- trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia . **Genotoxicity:** Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop- mental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50 s range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines.

Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and

trimethylbenzenes. No evidence of skin sensitization was identified. Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs.

The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hvdrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3 , respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, or male fertility was not affected in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation. Therefore, the reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality.

	Developmental Toxicity - Effects on Pups: Becau at the highest concentration (1480 ppm), effects observed in the F1 and F2 generation offspring were reduced by ~ 10-11% compared with contr weight was also depressed by ~ 12% throughou LOAEC from this study is 495 ppm (2430 mg/m Conclusion: No effects on reproductive paramet assessment of the group exposed at the highest mean pup weight and weight gain) was observe	use of significant maternal toxicity is in offspring at 1480 ppm are not at 103 or 495 ppm. However, in F rols at 495 ppm for approximately ut the gestational period compared 3) based on the body weights red ters were observed at any exposu t concentration was not possible.	r (including mortality) in dams in all generations reported here. No significant effects were 3 offspring, body weights and body weight gain a week (PND 14 through 21). Maternal body d with controls. The overall developmental uctions observed in the F3 offspring. re concentration, although a confident A potential developmental effect (reduction in o associated with maternal toxicity.
Oriem Hy Finish Part A & SOLVENT NAPHTHA PETROLEUM, HEAVY AROMATIC	Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver.		
Acute Toxicity	×	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	✓	Aspiration Hazard	✓
	Le	oend: 🗙 – Data either not ava	ailable or does not fill the criteria for classification

SECTION 12 Ecological information

Toxicity

Oriem Hy Finish Part A	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	72h	Algae or other aquatic plants	1mg/l	1
naphtha petroleum, light	EC50	72h	Algae or other aquatic plants	19mg/l	1
aromatic solvent	EC50	48h	Crustacea	6.14mg/l	1
	EC50	96h	Algae or other aquatic plants	64mg/l	2
solvent naphtha petroleum, heavy aromatic	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	48h	Crustacea	0.95mg/l	1
	LC50	96h	Fish	0.58mg/l	2
	EC50	72h	Algae or other aquatic plants	<1mg/l	1
	EC50	48h	Crustacea	0.95mg/l	1
	EC50	96h	Algae or other aguatic plants	1ma/l	2

 gend:
 Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity

 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan)

 Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water

surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water

Oils of any kind can cause:

- + drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- Iethal effects on fish by coating gill surfaces, preventing respiration
- + asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

For 1.2.4-trimethylbenzene:

Half-life (hr) air : 0.48-16

Half-life (hr) H2O surface water : 0.24-672

Half-life (hr) H2O ground : 336-1344

Half-life (hr) soil : 168-672

Henry's Pa m3 /mol: 385-627

Bioaccumulation : not significant

1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance. As a VOC, 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs.

Environmental fate:

Transport: ,1,2,4-Trimethylbenzene volatilises rapidly from surface waters as predicted by a Henry's law constant of 5.18 x 10-3 (vapor pressure, 2.03 mm Hg). The volatilisation half-life from a model river is calculated to be 3.4 hours. The chemical also volatilises from soils, however, based on an estimated Koc of 472, moderate adsorption to soils and sediments may occur

Transformation/Persistence

Air - Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals Reaction also occurs with ozone but very slowly (half life, 8820 days) In the atmosphere, two estimates of the half-life are approximately 6 hours and, in the presence of hydroxyl radicals, 0.5 days

Soil - Volatilisation is the major route of removal of 1,2,4- trimethylbenzene from soils; although, biodegradation may also occur Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations

Water - Because of 1,2,4-trimethylbenzene's water solubility and its vapor pressure of 2.03 mm Hg, the chemical will rapidly volatilise from surface waters Biodegradation of 1,2,4-trimethylbenzene occurred with inoculums from both seawater and ground water Various strains of Pseudomonas can biodegrade 1,2,4trimethylbenzene.

Biota - The estimated bioconcentration factor (439) and high volatility of 1,2,4-trimethylbenzene indicates that bioaccumulation of the chemical will not be significant

Ecotoxicity:

Fish LC50 (96 h): fathead minnow 7.72 mg/l

No stress was observed in Oncorhynchus mykiss (rainbow trout, fingerling) or Petromyzon marinus (sea lamprey, larvae) at 5 mg/L for 24 hours Daphnia magna EC50 (48 h): 3.61 mg/l

Cancer magister (dungeness crab) LC50 996 h): 5.1 mg/l

1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms; acute toxicity values fall within the range of greater than 1 mg/L and 100 mg/L. LC50 values for specific aquatic organisms range from approximately 5 to 8 mg/L which is orders of magnitude greater than any measured concentration in seawater (0.002 - 0.54 microgram/L) The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment. For aromatic hydrocarbons:

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene.

The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthracene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

Volatile furandiones and aldehydes are significant atmospheric oxidation products of aromatic compounds. Highly acidic dicarboxylic acids produced by the reactions between furandiones and water were shown to rapidly acidify an aqueous phase

For C9 aromatics (typically trimethylbenzene - TMBs)

Chemicals in this category possess properties indicating a hazard for the environment (acute toxicity for fish, invertebrates, and algae from 1 to 10 mg/L). Category members are readily biodegradable, except 1,3,5-trimethylbenzene (CAS RN 108-67-8). Category members are not expected to be bioaccumulative. Environmental Fate:

In the air, category member constituents have the potential to rapidly degrade through indirect photolytic processes mediated primarily by hydroxyl radicals with calculated degradation half-lives ranging from 0.54 to 2.81 days (based on a 12-hour day and a hydroxyl radical concentration of 5x10+5). Aqueous photolysis and hydrolysis will not contribute to the transformation of category chemical constituents in aquatic environments because they are either poorly reactive or not susceptible to these reactions.

Results of the Mackay Level I environmental distribution model show that chemical constituents of C9 Aromatic Hydrocarbon Solvents Category members have the potential to partition to air (96.8 to 98.9 %), with a negligible amount partitioning to water (0.2 to 0.6%) and soil (0.9 to 2.7%). In comparison, Level III modeling indicates that category members partition primarily to soil (66.3 to 79.6%) and water (17.8 to 25.0%) compartments rather than air (2.4 to 8.4%) when an equal emission rate (1000 kg/hr) is assumed to each of the air, water, and soil compartments. When release (1000 kg/hr) is modeled only to either the air, water, or soil compartment, constituents are indicated in the modeling to partition primarily (>94%) to the compartment to which they are emitted as advection and degradation influence constituent concentration in compartments to which constituents are not released. Solvent naphtha, (pet.), light aromatic (CAS RN 64742-95-6), 1,2,4trimethylbenzene (CAS RN 95-63-6), and 1-ethyl-3-methylbenzene (CAS RN 620-14-4) were determined to be readily biodegradable based on the studies that used the TG OECD 301F (the latter substance is used to characterize the potential biodegradability of the category member, ethylmethylbenzene (CAS RN

25550-14-5)). These three substances exceed 60%

biodegradation in 28 days and met the 10-day window criterion for ready biodegradation. In comparison 1,3,5-trimethylbenzene (CAS RN 108-67-8) was not readily biodegradable. It achieved 42% biodegradation after 28 days and 60% biodegradation after 39 days. The result for the multi-constituent substance (CAS RN 64742-95-6), a UVCB, characterizes the biodegradability of that substance as a whole, but it does not suggest that each constituent is equally biodegradable. As with all ready biodegradation test guidelines, the test system and study design used with these substances (OECD TG 301F) is not capable of distinguishing the relative contribution of the substances' constituents to the total biodegradation measured.

Based on Henry's Law constants (HLCs) representing a potential to volatilize from water that range from 590 to 1000 Pa-m3/mole, the potential to volatilize from surface waters for chemicals in the C9 Aromatic Hydrocarbon Solvents Category is expected to be high.

Based on the measured bioconcentration factors that range from 23 to 342 for 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, the category members are not expected to be bioaccumulative.

Ecotoxicity

Acute toxicity values used to characterize this category for fish (LL50; LC50) and invertebrates (EL50; EC50) range from 3.5 to 9.2 mg/L, based on measured data. For algae, one study for a category member (CAS RN 64742-95-6) resulted in a 72-hr EC50 of 2.4 mg/L (biomass) and 2.7 mg/L (growth rate) based on measured concentrations.

The algal 72-hour NOEC (no observed effect concentration) for biomass and growth rate is 1.3 mg/L, based on mean measured concentrations. A 21-day Daphnia magna reproduction study with 1,3,5-trimethylbenzene (CAS RN 108-67-8) resulted in a NOEC value of 0.4 mg/L, based on a minimum measured value. For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

(1) n-alkanes, especially in the C10-C25 range, which are degraded readily;

(2) isoalkanes;

(3) alkenes;

(4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

(5) monoaromatics;

(6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble,volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material

suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish

Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L.was determined

The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species . The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L.

Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
solvent naphtha petroleum, heavy aromatic	LOW (BCF = 159)

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

 Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be us tore the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended u has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shell filf considerations should also be applied in making decisions of this type. Note that properties of a material may change in recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sever may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible. 	used to o laws use. If it e use, and

Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable
treatment or disposal facility can be identified.
Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a
licensed apparatus (after admixture with suitable combustible material).
Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Land transport (ADG)

UN number	1263			
UN proper shipping name	PAINT (incl MATERIAL	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	Class Subrisk	3 Not Appl	icable	
Packing group	III			
Environmental hazard	Environme	ntally haza	rdous	
Special precautions for user	Special p Limited q	rovisions uantity	163 223 367 5 L	

Air transport (ICAO-IATA / DGR)

UN number	1263			
UN proper shipping name	Paint (including paint, la	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	3 Not Applicable 3L		
Packing group	III			
Environmental hazard	Environmentally hazard	ous		
Special precautions for user	Special provisions Cargo Only Packing Ir Cargo Only Maximum Passenger and Cargo Passenger and Cargo Passenger and Cargo Passenger and Cargo	nstructions Qty / Pack Packing Instructions Maximum Qty / Pack Limited Quantity Packing Instructions Limited Maximum Qty / Pack	A3 A72 A192 366 220 L 355 60 L Y344 10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)

Transport hazard class(es)	IMDG Class 3	
	IMDG Subrisk N	Not Applicable
Packing group	III	
Environmental hazard	Marine Pollutant	
Special precautions for user	EMS Number Special provisions	F-E, S-E 163 223 367 955
	Limited Quantities	5 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
naphtha petroleum, light aromatic solvent	Not Available
solvent naphtha petroleum, heavy aromatic	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
naphtha petroleum, light aromatic solvent	Not Available
solvent naphtha petroleum, heavy aromatic	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

naphtha petroleum, light aromatic solvent is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous	Chemical Footprint Project - Chemicals of High Concern List
Chemicals	International Agency for Research on Cancer (IARC) - Agents Classified by
Australian Inventory of Industrial Chemicals (AIIC)	the IARC Monographs

the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by

solvent naphtha petroleum, heavy aromatic is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (naphtha petroleum, light aromatic solvent; solvent naphtha petroleum, heavy aromatic)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes

National Inventory	Status
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	04/04/2022
Initial Date	04/04/2022

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average
PC-STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit。
IDLH: Immediately Dangerous to Life or Health Concentrations
ES: Exposure Standard
OSF: Odour Safety Factor
NOAEL :No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals
DSL: Domestic Substances List
NDSL: Non-Domestic Substances List
IECSC: Inventory of Existing Chemical Substance in China
EINECS: European INventory of Existing Commercial chemical Substances
ELINCS: European List of Notified Chemical Substances
NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory
NZIoC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances
TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas
NCI: National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances
This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.